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Abstract
We show that the well-known Routhian procedure of ignoring cyclic
coordinates is far more than a tool for obtaining equations of motion of reduced
order in a Lagrangian form. A transformation is introduced that involves a
number of arbitrary functions or additional parameters in the system while
preserving the Routhian equations of motion. Although these parameters
invoke new physical effects in the transformed system, the solution of the
latter is always obtained in a simple way from that of the original system. In
particular, from any integrable system with k cyclic degrees of freedom we
obtain a family of systems integrable on a fixed level of the cyclic integrals
and physically generalizing that system through the inclusion of k arbitrary
functions that depend only on the noncyclic coordinates. In many problems
of physical interest, a general integrable case can also be generalized to an
integrable case for arbitrary initial conditions. The method is applied to some
problems of rigid body dynamics. Four new integrable problems are obtained
as generalizations of known cases by including certain additional combinations
of gravitational and electromagnetic forces. The new cases are presented in an
explicit way that enables direct verification of the constancy of the integrals
using the equations of motion. Explicit time solution of the new cases is
discussed. Physical interpretation is given for two cases.

PACS numbers: 42.20.Jj, 45.40.Cc

1. Introduction

Integrable problems are rare exceptions in the totality of problems in mechanics. For these
one can make many important assertions about the global behaviour of motion and in many
cases the general explicit solution of the equations of motion in terms of time can be obtained.
Integrable problems are also of great importance in the study of real physical non-integrable
systems near to them. The search for integrable mechanical systems will remain one of
the principal fields of investigation in mechanics, astronomy, physics, engineering and other
sciences.
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In dealing with a concrete dynamical problem, it is usually hard to decide whether it is
integrable or not. Even if there is some numerical evidence of the regularity of motion, this
does not mean necessarily that the system is integrable unless the complementary integrals
can be found explicitly. Thus, there appeared a great interest in proving that a certain
given system is non-integrable and clarifying the obstructions to integrability. This direction
was founded by Poincare and has undergone remarkable developments recently. It was
particularly effective in a limited number of problems of rigid body dynamics (see e.g. [1–6])
and of celestial mechanics. However, research in this direction has not succeeded in isolating
new integrable cases as much as it has demonstrated the rarity of integrable cases in that
field.

A large collection of integrable systems in the plane is presented in the review [7].
The three classical integrable cases of the simple heavy rigid body dynamics known after
Euler, Lagrange and Kovalevskaya and their generalizations to the case of a gyrostat [8] are
examples of a unique type of integrable system, whose configuration space is not flat. The
same applies for all 16 known integrable cases of the problem of motion of a rigid body and
their subsequent generalizations [9] (see [10] for the 16th case). All these systems share the
property that the complementary integrals are polynomials in the velocity variables. However,
they were obtained by diverse methods. Explicit solutions were obtained until now only for a
very few and restricted cases of those systems (see e.g. [11]).

The inverse method developed in [12, 13] has proved very successful in constructing a large
number of new integrable mechanical systems in a unified systematic way. Some of these
systems generalize previously known integrable problems and many others are completely
new. For example, several-parameter integrable systems are obtained, which are reduced
to known integrable cases of rigid body dynamics for some choice of the parameters and to
integrable systems on the ellipsoid, sphere, or in the plane for some other choices. No physical
interpretation was found for most of those new integrable cases. Their dynamical behaviour
and their explicit solutions in terms of time are also unknown.

In [9] we have introduced another inverse method, specially designed for rigid body
dynamics. Certain transformations were found that leave invariant the form of the Euler–
Poisson equations of motion. Five general and 15 conditional integrable cases were obtained
using these transformations (see also [14]).

In this paper we present another inverse method for generalizing known integrable cases
of a certain type of mechanical system, namely those systems whose structure involves cyclic
coordinates. The basic idea is that for such a system to be integrable, all that matters is the
structure of its Routhian equations of motion after ignoring the cyclic coordinates. We use a
simple observation that several Lagrangian mechanical systems that have different Lagrangian
and Routhian functions can be reduced to one and the same set of Routhian equations. Clearly,
this will be the case if the Routhians of these systems differ only by constant terms that may
depend only on the cyclic constants.

This situation is utilized to introduce certain transformations of the systems under
consideration, which preserve their Routhian equations of motion. This means, in particular,
that the integrable cases of these systems are transformed into integrable cases of other
more general systems involving a number of arbitrary functions or, at least, some additional
parameters. It turned out that this generalization is nontrivial from the physical point
of view and can be interpreted through the introduction of new forces of gyroscopic and
electromagnetic origin in the system.

This method is applied here in detail to problems involving a rigid body or a gyrostat
acted upon by asymmetric and skew fields, to which the previous method was not applicable.
Several new integrable cases of those problems are found.
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2. Transformations of cyclic velocities

Consider the mechanical system of n + k degrees of freedom, of which k degrees are cyclic,
characterized by the time-independent Lagrangian

L = L(q1, . . . , qn, q̇1, . . . , q̇n, Q̇1, . . . , Q̇k). (1)

The system admits the cyclic integrals

∂L

∂Q̇i

= fi i = 1, . . . , k. (2)

Let us consider another system with the Lagrangian

L′ = L(q1, . . . , qn, q̇1, . . . , q̇n,Q̇
′
1 + ν1, . . . , Q̇

′
k + νk) −

k∑
i=1

βiνi(q1, . . . , qn) (3)

where β i are certain constants and νi are certain functions of the palpable coordinates
q1, . . . , qn. We note that the system (3) is time independent with the cyclic variables
Q′

1, . . . ,Q
′
k .

This system can be considered as a transformation of (1) through the linear time-
independent transformation of the cyclic variable rates

Q̇i = Q̇′
i + νi(q1, . . . , qn). (4)

Consider the motion of the system (3) on the same level of cyclic integrals as in (2), i.e.

∂L′

∂Q̇′
i

= fi i = 1, . . . , k. (5)

This is the transformed form of (2) according to (4).
Now, let R and R′ be the Routhians of the two systems, then their difference

R′ − R = L −
k∑

i=1

βiνi −
k∑

i=1

Q̇′
ifi −

(
L −

k∑
i=1

.

Qi fi

)

=
k∑

i=1

˙(Qi − Q̇′
i )fi − βiνi

=
k∑

i=1

(fi − βi)νi . (6)

The Routhian equations of motion (see e.g. [15] and [16]) of the system characterized by
(1) and (2) will be identical to those obtained for the transformed system (3) and (5) if we set
{fi = βi, i = 1, . . . , k}. In other words, under the last conditions, the arbitrary functions νi

do not affect the solution for the non-cyclic coordinates.
From the above considerations we draw the following theorems:

Theorem 1. If the system with the Lagrangian

L = L(q1, . . . , qn, q̇1, . . . , q̇n, Q̇1, . . . , Q̇k) (7)

is integrable for arbitrary initial conditions, then the system whose Lagrangian is

L′ = L(q1, . . . , qn, q̇1, . . . , q̇n, Q̇
′
1 + ν1, . . . , Q̇

′
k + νk) −

k∑
i=1

βiνi(q1, . . . , qn) (8)
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is integrable for arbitrary functions νi and arbitrary constants {βi} on the level{
∂L′

∂
.

Q′
i

= βi i = 1, . . . , k

}
(9)

of the cyclic integrals.

Theorem 2. If {q1(t), . . . , qn(t),Q1(t), . . . ,Qk(t)} is any solution of the system described
by (7), then {q1(t), . . . , qn(t),Q1(t) − ∫

ν1(q1(t), . . . , qn(t)) dt, . . . ,Qk(t) − ∫
νk(q(t), . . . ,

qn(t)) dt} is a solution of the system with Lagrangian (8) for arbitrary functions νi.

Theorem 3. The arbitrary functions {νi} do not affect in any way the explicit solution of the
Lagrangian equations of motion derived from (8) with respect to the palpable part of the
variables, since those variables are determined by the Routhian which is independent of {νi}.

Throughout the present paper we will call a problem general integrable if it is integrable
for arbitrary initial conditions and conditional integrable if it is integrable only on a single
level {f } of the cyclic integrals but for all initial conditions compatible with that level. In
both types of problems the solution can be reduced to quadratures through the application of
Liouville’s theorem to the reduced n-dimensional Hamiltonian system. It is thus sufficient to
point out n time-independent first integrals in involution to ensure integrability in these cases.

It should be stressed that the integrability of the system with Lagrangian (8) is conditional,
i.e. valid only for initial conditions consistent with the restriction (9),even if the original system
(7) is integrable for arbitrary initial conditions. There are, however, very important situations
when the new system can be made integrable for all initial conditions. This depends only
on the structure of the potential part of the Lagrangian. Such situations will be discussed for
generalized natural systems in section 4.

3. The case of a generalized natural system

For the sake of clarity and for future applications we consider in detail the case of a generalized
natural system with three degrees of freedom, of which one is cyclic. Let

L = 1
2

(
a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2

)
+ (c1q̇1 + c2q̇2)Q̇ + 1

2c3Q̇
2 + b1q̇1 + b2q̇2 + b3Q̇ − V (10)

where aij , bi , ci, V depend only on q1, q2, so that Q is a cyclic variable. On an arbitrary level
of the cyclic integral

c1q̇1 + c2q̇2 + c3Q̇ + b3 = f (11)

the Routhian has the form

R = 1

2

(
a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2

)− 1

2c3

[c1q̇1 + c2q̇2 + b3 − f ]2 + b1q̇1 + b2q̇2 − V. (12)

Now we perform in (10) the transformation

L′ = L − f ν

Q̇ = ν + Q̇′ ν = ν(q1, q2). (13)

According to the previous section, we get the new Lagrangian

L′ = 1
2

(
a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2

)
+ (c1q̇1 + c2q̇2)Q̇

′ + 1
2c3Q̇

′2 + b′
1q̇1 + b′

2q̇2 + b′
3Q̇

′ − V ′

(14)
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where

b′
i = bi + νci i = 1, 2, 3

(15)
V ′ = V + (f − b3)ν − 1

2ν
2c3.

Thus, the transformation (13) has led only to a change in the potential and in the coefficients
of the linear terms of the Lagrangian. This affects only the terms that express potential and
gyroscopic forces in the Lagrangian equations of motion. In many concrete cases we find it
easy to interpret the additional terms by means of the introduction of classical interactions:
Newtonian, Coulomb, magnetic and Lorentz.

Now, we ignore the cyclic variable Q′ in (14) with the aid of the cyclic integral

c1q̇1 + c2q̇2 + c3Q̇
′ + b′

3 = f (16)

and thus obtain the Routhian

R′ = R (17)

where R is the Routhian (12) on the same level f of the cyclic integral (11). Thus, the
original and the transformed systems have the same set of Routhian equations of motion while
describing different physical problems.

In certain circumstances, the transformation (13) can be used to simplify the Lagrangian
equations of motion. For example, when the coefficients in (10) satisfy the conditions

bi = −νci +
∂χ

∂qi
i = 1, 2, 3 (18)

where χ is an arbitrary function in q1, q2 and Q(q3), the linear terms in (14) form a total time
derivative dχ

dt and do not contribute to the equations of motion. In the transformed system the
gyroscopic forces have disappeared. We say that the gyroscopic forces in (13) are reducible if
for some function ν we have

b3 + νc3 = const
(19)

∂(b1 + νc1)

∂q2
− ∂(b2 + νc2)

∂q1
= 0.

In that case one can transform the problem in order to get rid of the gyroscopic forces at the
expense of modifying the potential function.

4. Generalization of the general integrable problems

Now we consider a case of special interest. Let the potential V in (10) have the form

V = V0 +
∑

aivi (20)

where {ai} are arbitrary constants and V0, vi are certain functions in q1, q2. Let the system
(10) be integrable. This means that, besides the Jacobi and the cyclic integrals, this system
admits an integral, which will depend on the set of constants {ai}, say

I3 = F(q1, q2, q̇1, q̇2, Q̇, a1, a2, . . .). (21)

If we choose ν in transformation (13) in the form

ν =
∑

nivi (22)

we get from (15) and (20)

V ′ = V0 +
∑

aivi + (f − b3)ν − 1
2ν

2c3
(23)

= V0 +
∑

(ai + f ni)vi − b3ν − 1
2ν

2c3.
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The equations of motion for the transformed problem will admit the integral

I ′
3 = F

(
q1, q2, q̇1, q̇2, Q̇

′ +
∑

nivi, a1, a2, . . .
)
. (24)

Since this integral is valid for the arbitrary parameters a1, a2, . . . we can introduce a set
of new arbitrary parameters A1, A2, . . . by the relations

Ai = ai + f ni i = 1, 2, . . . (25)

so that the potential can be written as

V ′ = V0 +
∑

Aivi − b3ν − 1
2ν

2c3 (26)

and the integral (24) as

I ′
3 = F

(
q1, q2, q̇1, q̇2, Q̇

′ +
∑

nivi, A1 − f n1, A2 − f n2, . . .
)
. (27)

The potential (26) now depends on the arbitrary parametersAi which can be viewed as the
actual parameters of the system, while the integral (27) depends on the arbitrary parameters
Ai and on the cyclic constant f which can be replaced by its expression to obtain the final
form

I ′
3 = F

(
q1, q2, q̇1, q̇2, Q̇

′ +
∑

nivi, A1 − n1(c1q̇1 + c2q̇2 + c3Q̇
′ + b′

3),

A2 − n2(c1q̇1 + c2q̇2 + c3Q̇
′ + b′

3), . . .
)
. (28)

This means that the system with potential V ′ is integrable for arbitrary initial conditions and
we are dealing with a case of general integrability.

Fortunately, in most known general integrable problems the potential has the structure
(20) and then they admit generalization as general integrable problems involving as many
arbitrary parameters as the number of constants {ai} in V . This result will be applied to
several problems in the next sections.

5. On the dynamics of a rigid body gyrostat

Consider a rigid body in motion about its fixed point O. LetOXYZ andOxyz be two Cartesian
coordinate systems, fixed in space and in the body respectively. Let also ω = (p, q, r) be the
angular velocity of the body and α,β,γ be the unit vectors in the directions of the XYZ-axes,
all being referred to the body system which we take as the system of principal axes of inertia.

These variables can be expressed in terms of Euler’s angles: ψ the angle of precession
about the Z-axis, θ the angle of nutation (between the z and Z axes) and the angle of proper
rotation ϕ about the z-axis. They have the form

α = (cosψ cosϕ − cos θ sinψ sin ϕ,− cosψ sinϕ − cos θ sinψ cosϕ, sin θ sinψ)

β = (sinψ cosϕ + cos θ cosψ sinϕ,− sinψ sinϕ + cos θ cosψ cosϕ,− sin θ cosψ)

γ = (sin θ sin ϕ, sin θ cosϕ, cos θ) (29)

ω = (ψ̇ sin θ sinϕ + θ̇ cosϕ, ψ̇ sin θ cosϕ − θ̇ sin ϕ, ψ̇ cos θ + ϕ̇). (30)

The problem considered here is the general problem of motion of a rigid body about a
fixed point under the action of a combination of conservative potential and gyroscopic forces,
described by the Lagrangian [17, 18],

L = 1
2ωI · ω + l · ω − V (31)
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where I = diag(A,B,C) is the inertia matrix of the body. The potential V and the vector l
depend only on the Eulerian angles through the nine direction cosines α1, α2, α3, β1, β2, β3,
γ 1, γ 2, γ 3.

The Lagrangian (31) describes a conservative system of three degrees of freedom, which
admits the Jacobi integral (the Hamiltonian of the system)

I1 ≡ H = 1
2ωI · ω + V = const.

We note that for its complete integration in the sense of Liouville we must obtain two additional
integrals of motion in involution with the Jacobi integral.

The equations of motion of a rigid body are usually written in the Euler–Poisson variables
ω,α,β,γ. For the present problem this form, corresponding to (31), was derived in our work
[18] to be

ω̇I + ω × (ωI + µ) = α × ∂V

∂α
+ β × ∂V

∂β
+ γ × ∂V

∂γ

α̇ + ω × α = 0 β̇ + ω × β = 0 γ̇ + ω × γ = 0 (32)

where I is the inertia tensor of the body at the fixed point and

µ = l +

(
α × ∂

∂α
+ β × ∂

∂β
+ γ × ∂

∂γ

)
× l

≡ ∂

∂α
(l · α) +

∂

∂β
(l · β) +

∂

∂γ
(l · γ) −

(
∂

∂α
· l
)

α

−
(

∂

∂β
· l
)

β −
(

∂

∂γ
· l
)

γ − 2l. (33)

It was shown in [17] that different terms of equations (32) in their general form may be
interpreted in most cases in one or more of the following (or other) ways.

The potentialV can be understood as being due to the scalar interactions of a gravitational
field with the mass distribution in the body, an electric field with a permanent distribution of
electric charges and a magnetic field with some magnetized parts or steady currents in the
electric circuits on the body. A constant term σ of the vectors µ and l is the so-called gyrostatic
moment that appears when the body carries a symmetric rotor forced to rotate uniformly with
respect to the principal body [19], while the variable terms of µ may appear as a result of the
Lorentz effect of the magnetic field on the electric charges. Let B and A be the intensity of the
magnetic field and the vector potential of this field at the point r of the body where the current
charge element de is placed. In that case one can write the vector l as (for details see [17])1

l = σ +
∫

r × A de (34)

while µ can be derived from l according to (33) or constructed directly in the form [17]

µ = σ −
∫
(r ·B)r de

= σ +
∫ (

r · ∂-
∂r

)
r de (35)

where - is the scalar magnetic potential. In several cases of interest for future application, -
can be expressed as a sum

-(X, Y,Z) = -1(X, Y,Z) + · · · + -N(X, Y,Z) (36)
1 Here MKS units are used. In Gaussian units de should be divided by the velocity of light c (e.g. [20]). We also
assume that velocity and acceleration are sufficiently small to neglect both relativistic effects and classical radiation
damping.
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of homogeneous harmonic polynomials up to the Nth degree, the formula (33) can be replaced
by

µ = σ +
N∑
s=1

s

∫
-s(X, Y,Z)r de.

Now, expressing r in the moving body axes xyz, we get

µ = σ +
N∑
s=1

s

∫
-s(r · α, r · β, r · γ)r de. (37)

i.e. components are polynomial in the direction cosines.
The gyrostatic moment σ can also be due to internal cyclic degrees of freedom such as

the circulation of fluid in holes inside the body or to forced stationary motions such as motors
and the flow of fluids in circuits in the body (see e.g.[21]). In an interesting alternative, due to
Levi-Civita [22], the rotor is left to move freely around its axis of symmetry fixed in the body.
In that case the matrix I is not simply the matrix of inertia of the system, but depends on the
direction of the rotor in the body and on the cyclic constant of its motion.

It was noted in [17] that a variable part of the vector µ also appears in the case of a moving
dielectric body in a combination of electric and magnetic fields.

6. The case of a rigid body under axisymmetric forces

If all forces acting on the body have the Z-axis (say) as a common axis of symmetry, then V

and l (and consequently µ) are functions of γ only and the angle ψ is a cyclic variable in the
Lagrangian (31). Equations of motion take the familiar form used in [17]

ω̇I + ω × (ωI + µ) = γ × ∂V

∂γ (38)
γ̇ + ω × γ = 0

µ = l +

(
γ × ∂

∂γ

)
× l

= ∂

∂γ
(l · γ) −

(
∂

∂γ
· l
)

γ. (39)

Only one Poisson equation is needed for γ in the system (38) to be closed. Having solved
this system in any concrete case, the determination of the angle ψ and hence the vectors α,β

come out in a natural way by means of a quadrature using the cyclic integral

(ωI + l) · γ = f. (40)

From (29) and (30) one can easily see that the cyclic velocity transformation in the equations
of motion (38) is equivalent to a change in the angular velocity

ω = ω′ + ν(γ)γ. (41)

Applying this transformation in the sense of section 2 to (31) we get the Lagrangian

L′ = 1
2ω′I · ω′ + l′ · ω′ − V ′. (42)

The equations of motion derived from the new Lagrangian are

ω̇′I + ω′ × (ω′I + µ′) = γ × ∂V ′

∂γ

γ̇ + ω′ × γ = 0 (43)
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on the integral level

(ω′I + l′) ·γ = f (44)

where

V ′ = V + (f − l · γ)ν − 1
2ν

2γI · γ
l′ = l + νγI (45)

µ′ = µ − 2νγ Ī Ī = 1
2 tr (I)δ − I.

The system described by (43) and (44) is mathematically equivalent to that described by
(38)–(40). The solution of one of them can readily be obtained from that of the other through
relation (41). The two systems have the same solution with respect to the vector γ or to the
Eulerian angles θ and ϕ. The angles of precession for the two systems are different by the
amount

ψ − ψ ′ =
∫ t

t0

ν(γ(t)) dt.

Each of the systems (43) and (38) can be interpreted on its own as representing the motion
of a body under the forces given in each case with respect to the inertial frame.

The equivalence of the two systems for constant ν was noted earlier in [17], using directly
the fact that transformation (41) preserves the form of the Euler–Poisson equations (38),
changing only V to V ′ and l to l′ or, equivalently, µ to µ′. In that case the constant term f ν

in the transformed potential is insignificant and can be omitted.
The invariance of equations of motion under transformation (41) for constant ν was used

in [17, 23–25] to generate new generalizations of known integrable problems and to relate
results concerning previously unrelated problems. In [9, 14] we have introduced six general
and 15 conditional integrable problems of rigid body dynamics generalizing all the known
integrable cases in the subject either by including a set of arbitrary constants or by an arbitrary
scalar function of the vector γ. The invariance of the Euler–Poisson equations under the
transformation (41) for variable ν was used to that end. The method of the present paper can
easily be seen to lead to the same results as in [9, 14] if applied to the dynamics of a rigid body
under forces with a common space axis of symmetry. Those results will not be reproduced
here.

7. Integrable cases of an axisymmetric body under asymmetric forces

In the present section we examine a type of symmetry that is compatible with the non-
symmetric character of the fields applied to the body and allows for a cyclic integral to exist.
For this type the body must admit axial dynamical symmetry, say B = A, such that the proper
rotation angle ϕ is cyclic. As we will note below, unlike the case of axially symmetric fields
combination, the Euler equations of motion in the present cases are not invariant under the
transformation of the cyclic variable.

The potential can depend only on the angles θ , ψ or equivalently on the three direction
cosines α3, β3, γ 3. The vector l should have the form

l = (λ1γ1 + λ2γ2, λ1γ2 − λ2γ1, l3)

where λ1, λ2, l3 are dependent only on α3, β3, γ 3.
The Lagrangian can be written as

L = 1
2 [A(p2 + q2) + Cr2] + l ·ω − V (θ,ψ) (46)
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and the cyclic integral has the form

Cr + l3 = f.

The transformation of the cyclic variable ϕ̇ = ϕ̇′+ν, where ν = ν(α3, β3, γ3), is equivalent
to the change

r = r ′+ν. (47)

In the transformed Lagrangian, V and l are transformed to

V ′ = V + ν(f − l3) − 1
2Cν

2

l′ = l + (0, 0, νC).

The addition of the new terms to the Lagrangian does not affect in any way the integrability
of the Lagrangian system nor would it complicate its explicit solution.

In particular, let us consider a system that moves under only potential forces, i.e. l = 0.
Taking ν = n = const, a constant gyroscopic moment Cn can always be added along the axis
of symmetry of the body, so that the system remains integrable. The modified system will
have the same general solution in terms of time as the original one with regard to the angles ψ ,
θ but the angle ϕ will differ by a constant rate n. In other words, this means that the dynamical
effect of the rotor with gyrostatic moment Cn is equivalent to increasing the axial component
of the principal body by the amount n.

We also note here that the present transformation of the problem of motion is not directly
associated with an invariance property of the Euler–Poisson equations of motion as was the
case for axially symmetric fields discussed in the preceding section and in full detail in [9].

There are only two known integrable cases of the type under consideration to which this
result can be applied.

7.1. A new general integrable case

In a well-known general case due to Brun, the body moves under forces whose potential
has a certain quadratic form in the nine direction cosines. The integrals of motion for that
case were found by Brun [26] and integration of the equations of motion was carried out by
Bogoyavlensky [27]. The restriction of this problem to the case of an axisymmetric body
A = B gives

V = 1
2

(
aα2

3 + bβ2
3 + cγ 2

3

)
(48)

l = (0, 0, 0).

If we transform this case using

ν = n + n1α
2
3 + n2β

2
3 + n3γ

2
3 (49)

we get a new integrable case in which

V = 1
2

(
aα2

3 + bβ2
3 + cγ 2

3

)− 1
2C
(
n + n1α

2
3 + n2β

2
3 + n3γ

2
3

)2

(50)
l = (

0, 0, C
(
n + n1α

2
3 + n2β

2
3 + n3γ

2
3

))
.

This gives

µ1 = −2C(n1α1α3 + n2β1β3 + n3γ1γ3)

µ2 = −2C(n1α2α3 + n2β2β3 + n3γ2γ3) (51)

µ3 = C
(
n + n1α

2
3 + n2β

2
3 + n3γ

2
3

)
.
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The integrals I2, I3 in this case can be written in the following form, which can be verified
directly:

I2 = C
(
r + n + n1α

2
3 + n2β

2
3 + n3γ

2
3

)
I3 = (a − 2n1I2)[A(pα1 + qα2) + C(r + ν)α3]2 + (b − 2n2I2)[A(pβ1 + qβ2) + C(r + ν)β3]2

+ (c − 2n3I2)[A(pγ1 + qγ2) + C(r + ν)γ3]2 − A[(b − 2n2I2)(c − 2n3I2)α
2
3

+ (c − 2n3I2)(a − 2n1I2)β
2
3 + (a − 2n1I2)(b − 2n2I2)γ

2
3 ].

(52)

Note that I3 is of third degree in general. However, when n1 : n2 : n3 :: a : b : c a constant
factor can be cancelled out and I3 becomes of second degree. If we set n1 = n2 = n3 = 0
then the new case generalizes the original one merely by the addition of a gyrostatic moment
Cn along the axis of dynamical symmetry. The present case (50)–(52) also generalizes one,
namely the second, of the two cases reported in [28] and reduces to it when A = C. It is to be
noted that the cases of [28] were obtained by a completely different method.

7.2. The second integrable case

In [28], in a completely different context, an integrable case valid for a body of spherical
dynamical symmetry A = B = C was introduced, for which

V = s1α3 + s2β3 + s3γ3 − 1

2A

(
bcα2

3 + caβ2
3 + abγ 2

3

)− 1

2
A(n + n1α3 + n2β3 + n3γ3)

2

+
1

2
(n + n1α3 + n2β3 + n3γ3)

[
(b + c)α2

3 + (c + a)β2
3 + (a + b)γ 2

3

]
µ1 = −[A(n1α1 + n2β1 + n3γ1) + aα3α1 + bβ3β1 + cγ3γ1] (53)

µ2 = −[A(n1α2 + n2β2 + n3γ2) + aα3α2 + bβ3β2 + cγ3γ2]

µ3 = A(n + n1α3 + n2β3 + n3γ3) − (
aα2

3 + bβ2
3 + cγ 2

3

)
.

Alternatively, this case could be obtained by using ν = n+n1α3 +n2β3 +n3γ3 in transforming
its special case n = n1 = n2 = n3 = 0. The last case is the analogue of Lyapounov’s case in
the dynamics of a rigid body in a liquid [29] in the sense of [28].

8. Integrable cases of a body with combined symmetry

In our note [8] (see also [30]), one of the new integrable cases introduced concerned a heavy
magnetized body-gyrostat with the Kovalevskaya configuration A − B − 2C moving in a
combination of uniform gravity and magnetic fields. In that case a linear integral of motion
was found in the form of a sum of the projections of the angular momentum of the body in the
Z- and z-directions. This integral was related to a cyclic variableψ + ϕ [30]. It was also shown
that this integral results from the symmetry of the problem under rotation in one coordinate
plane of the four-dimensional space of Euler’s (Hamilton–Rodrigues’) parameters [31] if used
as configurational variables. Here we follow up the general case when the problem of motion
admits this type of symmetry.

Let a rigid body-gyrostat with A = B be in motion under the action of forces with
potentialV (θ,ψ −ϕ) and gyroscopic moments compatible with the present type of symmetry
(this includes a gyrostatic moment σ directed along the axis of dynamical symmetry). The
Lagrangian of this system is
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L = 1
2 [A(p2 + q2) + Cr2] + l · ω − V

= 1
2 [A(θ̇2 + sin2 θψ̇2) + C(ψ̇ cos θ + ϕ̇)2] + ψ̇ l ·γ + ϕ̇l3 + θ̇ (l1γ2 − l2γ1) − V.

(54)

It has the cyclic variable ψ + ϕ under the conditions that the functions V, l · γ, l3, l1γ2 − l2γ1

depend only on the variables θ and ψ − ϕ. In terms of the rotation matrix (see equation (29))
this allows only the combinations of the direction cosines

α1 − β2, α2 + β1, γ3.

The corresponding integral is

A(pγ1 + qγ2) + Crγ3 + l · γ + Cr + l3 = const.

The transformation (ψ̇, ϕ̇) → (ψ̇ + ν, ϕ̇ + ν) changes (p, q, r) to (p + νγ1, q + νγ2, r +
ν(γ3 + 1)) and leads to the new pair

l′ = l + ν(Aγ1, Aγ2, C(γ3 + 1))
(55)

V ′ = V (θ,ψ − ϕ) + ν(f − l · γ − l3) − ν2

2

[
A
(
γ 2

2 + γ 2
1

)
+ C(γ3 + 1)2

]
.

The two systems described by the (l, V ) and (l′, V ′) are mathematically equivalent. From
the physical point of view the latter system involves several changes to the first. The most
interesting consequence of this equivalence is that any integrable case of (54) always generates
a more general integrable case of (55) containing the additional function ν. Applying this
to the three known cases of general integrability of (54) we obtain the following three new
general cases.

8.1. Case 1: a body with the Kovalevskaya configuration

This case is obtained for A = B = 2C by choosing

ν = n + n1(α1 − β2) + n2(α2 + β1) (56)

in (55) applied to the case of [8]. We get

l = C(2νγ1, 2νγ2, σ + ν(1 + γ3))

µ1/C = −nγ1 + n1(α2γ2 − 2α1γ1 + 3β1γ2) + n2(β2γ2 − 2β1γ1 − 3α1γ2)

µ2/C = −nγ2 + n1(−β1γ1 + 2β2γ2 − 3α2γ1) + n2(α1γ1 − 2α2γ2 − 3β2γ1) (57)

µ3/C = σ + n(1 − 3γ3) + n1[β3γ2 − α3γ1 + 4γ3(β2 − α1)]−n2[α3γ2 + β3γ1 + 4γ3(α2 + β1)]

V = C

{
a1(α1 − β2) + a2(α2 + β1) − ν2

2

[
2
(
γ 2

2 + γ 2
1

)
+ (γ3 + 1)2

]− σν(1 + γ3)

}
.

The corresponding integrals are

I2 = 2(pγ1 + qγ2) + r(1 + γ3) + σγ3 + ν(1 + γ3)(3 − γ3)

I3 = [(p + νγ1)
2 − (q + νγ2)

2 − (a1 − n1I2)(α1 + β2) + (a2 − n2I2)(α2 − β1)]
2

+ [2(p + νγ1)(q + νγ2) − (a2 − n2I2)(α1 + β2) − (a1 − n1I2)(α2 − β1)]2

+ 2σ [r − σ + ν(1 + γ3)][(p + νγ1)
2 + (q + νγ2)

2] (58)

− 4σ {(p + νγ1)[(a1 − n1I2)α3 + (a2 − n2I2)β3]

+ (q + νγ2)[(a2 − n2I2)α3 − (a1 − n1I2)β3]}.
The linear integral I2 corresponds to the cyclic variable ψ + ϕ. The integral I3, though it
became more complicated, still has the fourth degree.
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This case generalizes by the presence of the two parameters n1, n2 the case found
in [32]. The explicit solution of the system (57), (58) can be deduced as described in
the above sections from that of the special version n = n1 = n2 = 0. That is the case
noted in [8, 30]. It is now known that the last case is also a special version of a case
found in [33] in which no cyclic variable is present and which is solvable by the Lax pair
method. The solution ψ = 5(t), θ = 6(t), ϕ = 7(t) of our case when n = n1 = n2

= 0 follows from that solution. The solution of the full system (57), (58) can readily
be written as ψ(t) = 5(t) − ∫

ν(t) dt, θ(t) = 6(t), ϕ(t) = 7(t) − ∫
ν(t) dt , where

ν(t) = n+ (1 − cos6(t))(n1 cos(5(t)−7(t))+n2 sin(5(t)−7(t))). Note that the palpable
coordinates θ and ψ − ϕ are not affected by the extra parameters n, n1 and n2.

8.2. Case 2: a case of a dynamically spherical body

For the second integrable case of (54)

A = B = C

l = 0
(59)

V = v(α1 + β2 + γ3)

= v((1 + cos θ) cos(ψ + ϕ) + cos θ)

where v is an arbitrary function of its argument. The integrability, separation of variables and
explicit solution of this problem were presented in [34]. According to the above considerations
this case admits the following integrable generalization corresponding to the cyclic variable
ψ − ϕ:

V = v(α1 + β2 + γ3) − Aν2(1 − γ3)

µ1 = − Aγ1ν + A[(γ3 − 1)(α3 − γ1) − γ2(β1 − α2)]ν ′
(60)

µ2 = − Aγ2ν + A[(γ3 − 1)(β3 − γ2) + γ1(β1 − α2)]ν ′

µ3 = − A(1 + γ3)ν + A(1 − γ3)(1 + α1 + β2 + γ3)ν
′

where ν ′ is the derivative of ν with respect to its argument. Integrals of motion can be shown
to be

I2 = ω · γ − r + 2ν(1 − γ3)

I3 = [ω · α − p − ν(γ1 + α3)]
2 + [ω · β − q − ν(γ2 + β3)]

2 (61)

+ [ω · γ − r + 2ν(1 − γ3)]2.

The separation of variables can be achieved through a transformation to the Euler (Hamilton–
Rodrigues) variables in the same way as in [34]. However, the solution can be obtained
directly from that of the original problem according to the change θ(t), ψ(t), ϕ(t) →
θ(t), ψ(t) +

∫
ν(t)dt, ϕ(t) − ∫

ν(t)dt , where ν (t) stands for the value of ν in the original
solution, i.e. ν(t) = ν(θ(t), ψ(t) + ϕ(t)).

8.3. Case 3: another case of a dynamically spherical body

In [35] Bogoyavlensky noted that the dynamics of the body of the spherical dynamical
symmetry A = B = C is integrable for a potential which is linear in all the nine direction
cosines. It can be written as

V = a ·α + b · β + c ·γ (62)
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where a, b and c are arbitrary vectors constant in the body. This problem was reduced to the
Neumann problem on the sphere S 3 [35]. The integrals of motion in that case are all quadratic
in the angular velocities and the explicit solution can be found in terms of the Riemannian
theta-functions as follows from that of the Neumann system [36, 37].

It is possible, without loss of generality, to choose the space and body axes to reduce (62)
to the much simpler form

V = A(aα1 + bβ2 + cγ3) (63)

containing only three parameters. In fact, it can easily be seen that the potential (62)
is a quadratic form in the four-dimensional space of the Euler (Hamilton–Rodrigues)
parameters (e.g. [31, 38]). Through a rotation of the basis of the four-dimensional space,
which is equivalent to the two rotations of the three-dimensional space and body systems,
diagonalization of the quadratic form is possible and leads to the form (63). This simple
form of the potential enables us to express the integrals of the problem in the Euler–Poisson
variables, which was not done in [35]. We get

i2 = 1
2 [ap(pα1 + qα2 + rα3) + bq(pβ1 + qβ2 + rβ3) + cr(pγ1 + qγ2 + rγ3)]

+ bcα1 + caβ2 + abγ3

i3 = 1
2

{
a2 [p2 + (pα1 + qα2 + rα3)

2] + b2 [q2 + (pβ1 + qβ2 + rβ3)
2]

+ c2 [r2 + (pγ1 + qγ2 + rγ3)
2]} + bcp(pα1 + qα2 + rα3) (64)

+ caq(pβ1 + qβ2 + rβ3) + abr(pγ1 + qγ2 + rγ3)

+ 2a(b2 + c2)α1 + 2b(c2 + a2)β2 + 2c(a2 + b2)γ3.

For our purpose, we need to find the condition on the parameters a, b and c that makes
the system admit a linear integral. One can easily verify that this happens when two of those
parameters are equal in modulus. Without loss of generality we can choose b = −a and hence
the potential becomes

V = A{a(α1 − β2) + cγ3}. (65)

This choice makes the variable ψ − ϕ cyclic and leads to the linear integral

I2 = ω · γ + r. (66)

Thus, applying the present method of generalization with ν = n+ n1(α1 − β2)+ n2γ3, we
arrive at a new case characterized by

V = A{a(α1 − β2) + cγ3 − (1 + γ3)[n + n1(α1 − β2) + n2γ3]2} (67)
µ1 = A[−nγ1 + 2n1(β1γ2 − α1γ1) − n2γ1(1 + 2γ3)]

µ2 = A[−nγ2 + 2n1(β2γ2 − α2γ1) − n2γ1(1 + 2γ3)]

µ3 = A[n(1 − γ3) − 2n1γ3(α1 − β2) + n2(1 − γ3)(1 + 2γ3)] (68)

I2 = ω · γ + r + 2(1 + γ3)[n + n1(α1 − β2) + n2γ3] (69)

I3 = (a − n1I2)[(p + νγ1)(ω · α + να3) − (q + νγ2)(ω · β + νβ3)]

+ (c − n2I2)[r + ν(γ3 + 1)][ω · γ + ν(1 + γ3)]

− 2(a − n1I2)(c − n2I2)(α1 − β2) − 2(a − n1I2)
2γ3 (70)

which contains the extra parameters n, n1 and n2. Note that the integral I3 is a polynomial
of the third degree in the angular velocities. It reduces to a quadratic form when either n1 :
n2 :: a : c or n1 = n2 = 0. As the case n = n1 = n2 = 0 reduces to a special version of
Bogoyavlensky’s case, the general solution of the full case (67)–(70) can also be expressed in
terms of the hyperelliptic theta-functions.



Transformations of mechanical systems 11181

In conclusion, we note that an application similar to that of the last three sections can
be performed for other problems of rigid body dynamics with one or more cyclic variables.
Examples are the problem of motion of a gyroscope in the Cardan suspension (e.g. [19]) and
the problem of motion of a body with an ellipsoidal cavity filled with an ideal incompressible
fluid in a state of vortex motion [40].

9. Examples of physical interpretation

From the considerations of section 5, we see that a physical interpretation of the obtained cases
is possible within the framework of motion of charged, magnetized bodies in the presence of
a non-uniform combination of the three classical fields. Due to the abundance of physical
parameters representing the three distributions and the coefficients of the three potentials, it
should be easy to adjust these parameters to match the potential in each case and, moreover,
in a variety of choices.

We will carry out detailed examples of the less obvious adjustment of the scalar magnetic
potential - and the charge distribution to meet the Lorentz effect giving rise to the vector
µ in each case. This will be done for the two cases of section 7. It is easy to verify that
the most general harmonic second-degree polynomial potential can be reduced by a rotation
transformation to the form

- = a1X + a2Y + a3Z + 1
2

(
a11X

2 + a22Y
2 + a33Z

2) (71)

with coefficients subject to the single condition

a11 + a22 + a33 = 0 (72)

ensuring that - is harmonic. According to (37) we can write

µ1 =
∫

xF(r ·α, r · β, r · γ) de

µ2 =
∫

yF(r ·α, r · β, r · γ) de
(73)

µ3 = σ +
∫

zF (r ·α, r · β, r · γ) de

where σ is a gyrostatic moment directed along the z-axis and

F(X, Y,Z) = a1X + a2Y + a3Z + a11X
2 + a22Y

2 + a33Z
2. (74)

To guarantee that ϕ is cyclic, we assume the distribution of electric charges on the body to be
axisymmetric around the z-axis. By virtue of symmetry

∫
xε1yε2zε3 de is symmetric in ε1 and

ε2 and it vanishes whenever ε1 or ε2 is odd. We denote the remaining integrals as∫
x2 de =

∫
y2 de = J

∫
z2 de = J ′

∫
x2z de =

∫
y2z de = K

∫
z3 de = K ′.

We finally find

µ1 = J (a1α1 + a2β1 + a3γ1) + K(a11α3α1 + a22β3β1 + a33γ3γ1)

µ2 = J (a1α2 + a2β2 + a3γ2) + K(a11α3α2 + a22β3β2 + a33γ3γ2) (75)

µ3 = σ + J ′(a1α3 + a2β3 + a3γ3) + K ′ (a11α
2
3 + a22β

2
3 + a33γ

2
3

)
.
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9.1. For case 7.1

Comparing (51)–(75) we find that the uniform part −(a1, a2, a3) of the external magnetic
field must vanish, so that the potential (71) should be homogeneous quadratic. In addition
to the symmetry around the z-axis, the charge distribution should satisfy the single condition
K ′ = − 1

2K , i.e.∫
(x2 + 2z2)z de = 0. (76)

The coefficients in (51) in terms of the parameters of the body and field have the form

n = σ

C
n1 = −Ka11

2C
n2 = −Ka22

2C
n3 = −Ka33

2C
. (77)

9.2. For case 7.2

Equating the coefficients in (53) and (75), we find that the charge distribution must satisfy the
following two conditions J ′ = −J,K ′ = K , i.e.∫

z2 de = −
∫

x2 de (78)∫
x2z de =

∫
z3 de (79)

and, without any loss of generality, we can express the parameters in (53) in terms of the
parameters of the body and external magnetic field in the form

n1 = − Ja1

A
n2 = −Ja2

A
n3 = −Ja3

A

n = σ

A (80)
a = −Ka11 b = −Ka22 c = −Ka33.

If we define the moments of inertia of the distribution by Ae,Be, Ce, from symmetry we
have Ae = Be. The condition (78) imposed on the second moments of the charge distribution
can be put in the form Ae = Be = 0. This is not a serious restriction, since electric charge
distribution, unlike mass, can take positive and negative densities.
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